64 research outputs found

    Tacit Representations and Artificial Intelligence: Hidden Lessons from an Embodied Perspective on Cognition

    Get PDF
    In this paper, I explore how an embodied perspective on cognition might inform research on artificial intelligence. Many embodied cognition theorists object to the central role that representations play on the traditional view of cognition. Based on these objections, it may seem that the lesson from embodied cognition is that AI should abandon representation as a central component of intelligence. However, I argue that the lesson from embodied cognition is actually that AI research should shift its focus from how to utilize explicit representations to how to create and use tacit representations. To develop this suggestion, I provide an overview of the commitments of the classical view and distinguish three critiques of the role that representations play in that view. I provide further exploration and defense of Daniel Dennett’s distinction between explicit and tacit representations. I argue that we should understand the embodied cognition approach using a framework that includes tacit representations. Given this perspective, I will explore some AI research areas that may be recommended by an embodied perspective on cognition

    Model Cards for Model Reporting

    Full text link
    Trained machine learning models are increasingly used to perform high-impact tasks in areas such as law enforcement, medicine, education, and employment. In order to clarify the intended use cases of machine learning models and minimize their usage in contexts for which they are not well suited, we recommend that released models be accompanied by documentation detailing their performance characteristics. In this paper, we propose a framework that we call model cards, to encourage such transparent model reporting. Model cards are short documents accompanying trained machine learning models that provide benchmarked evaluation in a variety of conditions, such as across different cultural, demographic, or phenotypic groups (e.g., race, geographic location, sex, Fitzpatrick skin type) and intersectional groups (e.g., age and race, or sex and Fitzpatrick skin type) that are relevant to the intended application domains. Model cards also disclose the context in which models are intended to be used, details of the performance evaluation procedures, and other relevant information. While we focus primarily on human-centered machine learning models in the application fields of computer vision and natural language processing, this framework can be used to document any trained machine learning model. To solidify the concept, we provide cards for two supervised models: One trained to detect smiling faces in images, and one trained to detect toxic comments in text. We propose model cards as a step towards the responsible democratization of machine learning and related AI technology, increasing transparency into how well AI technology works. We hope this work encourages those releasing trained machine learning models to accompany model releases with similar detailed evaluation numbers and other relevant documentation

    The circumnuclear environment of the peculiar galaxy NGC 3310

    Full text link
    Gas and star velocity dispersions have been derived for eight circumnuclear star-forming regions (CNSFRs) and the nucleus of the spiral galaxy NGC3310 using high resolution spectroscopy in the blue and far red. Stellar velocity dispersions have been obtained from the CaII triplet in the near-IR, using cross-correlation techniques, while gas velocity dispersions have been measured by Gaussian fits to the Hb 4861A and [OIII]5007A emission lines. The CNSFRs stellar velocity dispersions range from 31 to 73 km/s. These values, together with the sizes measured on archival HST images, yield upper limits to the dynamical masses for the individual star clusters between 1.8 and 7.1 x 106^6 M_\odot, for the whole CNSFR between 2 x 107^7 and 1.4 x 108^8 M_\odot, and 5.3 x 107^7 M_\odot for the nucleus inside the inner 14.2 pc. The masses of the ionizing stellar population responsible for the HII region gaseous emission have been derived from their published Ha luminosities and are found to be between 8.7 x 105^5 and 2.1 x 106^6 M_\odot for the star-forming regions, and 2.1 x 105^5 M_\odot for the galaxy nucleus; they therefore constitute between 1 and 7 per cent of the total dynamical mass. The ionized gas kinematics is complex; two different kinematical components seem to be present as evidenced by different line widths and Doppler shifts.Comment: 24 pages, accepted by MNRA

    Membrane-proximal TRAIL species are incapable of inducing short circuit apoptosis signaling: implications for drug development and basic cytokine biology

    Get PDF
    TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3. However, cell death proceeded exclusively via a bystander mechanism and protected the mesothelin-positive targets from apoptosis rather than leading to their elimination. Incorporation of a spacer-into the mesothelin surface antigen or the cancer drug itself-converted SS-TR3 into a cis-acting phenotype. Further experiments with membrane-anchored TR3 variants and the native cytokine confirmed our hypothesis that membrane-proximal TRAIL species lack the capacity to physically engage their cognate receptors coexpressed on the same cell membrane. Our findings not only provide an explanation for the “peaceful” coexistence of ligand and receptor of a representative member of the TNF superfamily but give us vital clues for the design of activity-enhanced TR3-based cancer therapeutics

    On the derivation of dynamical masses of the stellar clusters in the circumnuclear region of NGC2903

    Get PDF
    (Abridged) Gas and star velocity dispersions have been derived for four circumnuclear star-forming regions (CNSFRs) and the nucleus of the spiral galaxy NGC2903 using high resolution spectroscopy in the blue and far red. Stellar velocity dispersions have been obtained from the CaII triplet (CaT) lines at 8494, 8542, 8662A, using cross-correlation techniques while gas velocity dispersions have been measured by Gaussian fits to the Hbeta line. The CNSFRs, with sizes of about 100 to 150pc in diameter, show a complex structure at the Hubble Space Telescope resolution, with a good number of subclusters with linear diameters between 3 and 8pc. Their stellar velocity dispersions range from 39 to 67 km/s. These values, together with the sizes measured on archival HST images yield upper limits to the dynamical masses for the individual star clusters between 1.8 and 8.7 x 106^6 M_\odot and upper limits to the masses for the whole CNSFR between 4.9 x 106^6 and 4.3 x 107^7 M_\odot. ...Comment: 20 pages, 12 figures, 6 tables. Accepted for publication in MNRA

    Eleven strategies for making reproducible research and open science training the norm at research institutions

    Get PDF
    Across disciplines, researchers increasingly recognize that open science and reproducible research practices may accelerate scientific progress by allowing others to reuse research outputs and by promoting rigorous research that is more likely to yield trustworthy results. While initiatives, training programs, and funder policies encourage researchers to adopt reproducible research and open science practices, these practices are uncommon inmanyfields. Researchers need training to integrate these practicesinto their daily work. We organized a virtual brainstorming event, in collaboration with the German Reproducibility Network, to discuss strategies for making reproducible research and open science training the norm at research institutions. Here, weoutline eleven strategies, concentrated in three areas:(1)offering training, (2)adapting research assessment criteria and program requirements, and (3) building communities. We provide a brief overview of each strategy, offer tips for implementation,and provide links to resources. Our goal is toencourage members of the research community to think creatively about the many ways they can contribute and collaborate to build communities,and make reproducible research and open sciencetraining the norm. Researchers may act in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees. Institutionalleadership and research administration andsupport staff can accelerate progress by implementing change across their institution

    Eleven strategies for making reproducible research and open science training the norm at research institutions

    Get PDF
    Across disciplines, researchers increasingly recognize that open science and reproducible research practices may accelerate scientific progress by allowing others to reuse research outputs and by promoting rigorous research that is more likely to yield trustworthy results. While initiatives, training programs, and funder policies encourage researchers to adopt reproducible research and open science practices, these practices are uncommon inmanyfields. Researchers need training to integrate these practicesinto their daily work. We organized a virtual brainstorming event, in collaboration with the German Reproducibility Network, to discuss strategies for making reproducible research and open science training the norm at research institutions. Here, weoutline eleven strategies, concentrated in three areas:(1)offering training, (2)adapting research assessment criteria and program requirements, and (3) building communities. We provide a brief overview of each strategy, offer tips for implementation,and provide links to resources. Our goal is toencourage members of the research community to think creatively about the many ways they can contribute and collaborate to build communities,and make reproducible research and open sciencetraining the norm. Researchers may act in their roles as scientists, supervisors, mentors, instructors, and members of curriculum, hiring or evaluation committees. Institutionalleadership and research administration andsupport staff can accelerate progress by implementing change across their institution

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Factor H-related proteins determine complement-activating surfaces.

    Get PDF
    Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway
    corecore